Mesh Denoising via Cascaded Normal Regression
Peng-Shuai Wang 1,2 Yang Liu 2 Xin Tong 21 Tsinghua University 2Microsoft Research Asia
ACM Transactions on Graphics (SIGGRAPH Asia), 2016
Abstract
We present a data-driven approach for mesh denoising. Our key idea is to formulate the denoising process with cascaded non-linear regression functions and learn them from a set of noisy meshes and their ground-truth counterparts. Each regression function infers the normal of a denoised output mesh facet from geometry features extracted from its neighborhood facets on the input mesh and sends the result as the input of the next regression function. Specifically, we develop a filtered facet normal descriptor (FND) for modeling the geometry features around each facet on the noisy mesh and model a regression function with neural networks for mapping the FNDs to the facet normals of the denoised mesh. To handle meshes with different geometry features and reduce the training difficulty, we cluster the input mesh facets according to their FNDs and train neural networks for each cluster separately in an offline learning stage. At runtime, our method applies the learned cascaded regression functions to a noisy input mesh and reconstructs the denoised mesh from the output facet normals.